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Chapter I. 

Introduction 

Thunderstorms  are  inadequately  understood,  but  that  they  are 

essentially  three  dimensional and usually  highly  time  dependent 

is  becoming  obvious  (e.g,,Connell, 1973, 1975 a,b,c).  One  feature 

which  is  coming  to  light is.the existence  of  pairs  of  counter- 

rotating  vortices  in  the  low-to-middle  levels  of  the storm, 

(?.g,Connell, 1973,  1975, a,b,c; Schlesinger, 1975; Jessup, 

1972; Lemon, 1974; Kropfli  and  Miller, 1975; and  others). 

It may  be  possible,  with  measured  understanding  of  these 

vortices  and  their  mechanisms,  to  partly  explain  a  number  of 

seemingly  unrelated  characteristics  of  thunderstorms  suuh 

as  left  and  right  deviate  motion,  splitting,  tornado  development, 

location  and  motion,  and  updraft  pairs  and  downdraft  on  single 

circulations  at  cloudbase. It may  even  be.  that  differences  in 

microphysics  occur  in  different  portions  of  the  spiraling 

updrafts  which  seem  to be organized,  though  not  totally  driven, 

by  the  non-thermal  mechanism  of  the  vortex  pairs. 

The  object  of  the  present  report  is  fivefold. 

(1) To  assemble  some  of  the  evidence  for  existence  of  vortices 

and  vortex  pairs  in  thunderstorms. 

(2) To report  a  preliminary  parameterized  model  of  the non- 

thermal  generation  of  thunderstorm  vortices  derived  from 

field  observations  of  storms  and  laboratory  observations  of 

a  jet  in  crossflow. 
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(3) To explain  how  such a model  might  be  used  to  guide  analysis 

.of mesoscale  rawinsonde,  radar  and  satellite  data  toward 

an  improved  capability  for  prediction  of  thunderstorm 

motion.and growth. 

(4) To present  preliminary  analyses  of  radar  and  satellite 

data  from  the  AVE  IV*  experiment  which  will  be  used  with ' ' 

rawinsonde  data,  when  available,  to  develop a correlation 

between  wind  shears,  instability  and  thunderstorm  motion 

and  development. 

( 5 )  To recommend  specific  studies  for  best  development  of  concepts 

and  utilization  of  AVE*  and  AVSSE**  data. 

The  report  incorporates  papers  started  prior  to  the  NASA- 

MSFC contract  by  Dr.  Connell  but  completed  under  it.  There  are 

also  chapters  reporting  work  done  solely  under  the  present  contract. 

It is  the  author's  purpose  to  make  clear  the  rather  exciting 

prospect  that a non-thermal  mechanism  of  airflow  due  to a cumulonimbus 

in a vertical  shear  of  horizontal  wind  may  lead  to  additional 

use  of  mesoscale  data  from  satellites,  rawinsondes  and  radars  and 

to  simplified  three-dimensional  modeling  of  thunderstorms. 

* AVE:  Atmospheric  Variability  Experiments I,II,III and  IV 
have  been  undertaken  by  NASA-MSFC  to  improve  understanding  of 
mesoscale  weather  systems  in  parts  of  the  eastern  half  of  the U . S .  

**AVSSE:  Atmospheric  Variability  Severe  Storms  Experiments 
undertaken  by  -NASA-MSFC  and.Goddard to study  severe  thunderstorms. 
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The next three chapters are comprised  of three papers 

written by the  author (Dr. Connell)  concerning  thunderstorm 

airflow.  Chapter 2 sets the conceptual  stage  for  interpretation 

of thunderstorm  observations  in  terms  of  a  non-thermodynamic 

forcing  mechanism.  Chapter 3 presents a case  study of a 

hailstorm with right  deviation,  subcloud  vortices  and  apparent 

splitting.  Chapter 4 discusses the observations'of a  tornadic 

storm which contained  cyclonic  vortices  on four scales. 

. .  
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Chapter 11. 

A non-thermal  mechanism  of  thunderstorm  development  and  motion 

1. Introduction 

Cumulonimbi'must  generate  significant  forces  due  to 

collisions  between  airflows  having  very  different  transports of 

momentum.  Some  such  interactions  have  been  discussed by Newton 

and  Newton (1959), Fujita  and  Grandoso' (1968), Fulks (19621, 

and  Fankhauser (1971), among  others.  Recently  observed  cloud 

airflows  appear  to  require a.forcing mechanism  not  based  upon 

buoyancy.  Marwitz (1973) has  shown  that  negatively  buoyant 

updrafts  in  the WER were  accelerating  upward.  The  slope of wind 

in  subcloud  updrafts  and  the  nature  of  near-lee  horizontal 

circulations  at  cloud  base  have  been  reported  by  Connell 

(1973). Dual-doppler  radar  measurements  of  thunderstorm  airflow 

provide  especially  valuable  glimpses  in  three  dimensions  with 

exceptional  resolution.  The  data  by  Kropfli  and  Miller (1975) 

show a near-lee  lateral  pair  of  contrarotating  eddies,  which is 

consistent  with  the  model  elaborated  in  the  present  communication. 

2. Wake  vortices  and  modified  updrafts. 

A wide  range  of  observations  of  fluid  flow  around  either 

solid  or  fluid-momentum  obstacles  suggests  that  pairs  of 

contrarotating  vortices  often  occur  in  the  lee.  Jessup (1972) 

reviewed  some  of  the  observations.  Theoretical  and  flow-tunnel 

studies  of a jet in a crossflow  have  elucidated  features of the 

dynamics  of  stack  plumes  and  jets  from 

See, for  example,  the  series  of  papers 

VTOL aircraft  in 

in  NASA (1969). 

crosswinds. 

Quantitative 
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information  is  available  regarding  scaling,  mechanisms,  velocity 

and  pressure  fields. A brief  outline  of  some useful. results 

is  given  ,below. -. , 

The  main  qualitative  features of three-dimensional  jets  in 

a crossflow  are  as  follows: 

Elastic  collision  along  the  upwind  surface  of  the  jet 

spreads  it  laterally  and  forms  contrarotating  vortices 

and a wake  in  the  lee. 

Inelastic  collision,  or  momentum  mixing,  bends  the  jet 

so that  its  axis  turns  downwind. 

The  contrarotating  vortex  pair  induces  mean  flow  in  the 

wake  region  which  corresponds  to  inflow-updraft. 

Swir1,if  forced  upon  the  whole jet, enhances  the  lee 

vortex  which  is  rotating  in  the  same  sense  as  the 

whole  jet  and  inhibits  the  other  lee  vortex. 

In  most  respects,  replacement  of a solid  cylinder  in a 

crossflow  by a fluid  jet  whose  initial  direction  is  parallel  to 

the  axis  of  the  lsolid  and  whose  orifice  is  identical  in  shape  to 

the  cross  section  of  the  solid  results  in  more  pronounced  effects. 

The  wake is wider,  the  vorticity of the  lee  eddies  is  greater, 

the  pressure  defect  is  larger  and  the  wake  vortices  may  be 

very  close  to  the  upstream edge. The  position  of  the  vortices is 

a function  of  the  ratio  of  the  updraft  speed  to  the  wind  speed, 

W/U, and  the  crosswind  aspect  ratio  of  the  jet  cross  section. 
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A stationary  vortex pair'may 'remain.  with  the  jet  for  Reynolds 

numbers up to 2500. Von  Karman  vortex  streets  form  for  Reynolds 

numbers  between 2500 and 5000. For  larger  Reynolds  numbers  up 

to  at  least 500,000, irregular  vortex  streets  exist  (see 

Butkewicz, 1970). 

3 . ,  , Scaling 
. . .  . 

Wind  and  water  tunnel  studies  indicate  that  Reynolds  number 

similarity.holds  for  jets  in  crossflows  (Keffer, 1969). The 

pressure  is  scaled  using  the  nondimensional  pressure  coefficient, 

Cp, and  is a function of the  velocity  ratio, W/U. The  shape 

of the  bent  axis of the  jet  scales  with  the  diameter  of  the  jet 

orifice.  Linear  coordinates  are  stretched  by  the  velocity  ratio 

squared  as  shown  in  the  equation  with  the  plot  of  jet  axis  shape 

in  Figure 1, adapted  from  Margason (1969). The  shape  of  the 

axis  could be readily  modified  to  account  for  buoyancy 

(McAllister, 1968). 
f 

Application  of  Reynolds  number  similarity  using  molecular 

viscosity  would  lead  to  the  conclusion  that  only  irregular  vortex 

streets  ma be shed  by  thunderstorms.  However,  turbulence  is a 

much  more  significant  momentum  mixer  at  thunderstorm  scales  than 

is  random  molecular  motion. A turbulence  Reynolds  number  using 

typical  eddy  viscosities  measured  in  and  around  cumulonimbi 

(Aleksandrov,  Silayeva  and  Shmeter, 1967) may  have  magnitudes 

as indicated  below. 

\ 

Re = 20 x IO4 MKS = 10 4 to 2 x 10 3 . 
t 2 0 0  
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The  Reynolds  number  for  a  jet  in  a  crossflow  studied  in  the  wind 

tunnel  by  Jordinson  (1956)  is  about 3 x 10 . 4 

4. Comparison of a scaled-up  jet  in  a  crossflow  with  a  cumulonimbus. 

Jordinson  (1956)  measured  total  pressures  in  the  flow  field 

of  the  jet  of  air  represented  by  the  diagrams  in  Figures 2,  

3 ,  and 4 .  The  pressures  are  plotted  as  isopleths of the  pressure 

coefficient, C . Using  cumulonimbus  wind  speeds,  the  scaled 

static  pressure  defect  in  the  lee  vortices  may  be  estimated 

using  the  following  relations. 

P J W  W 

P 

C = (P.-P  )/(Pjo- P ) ,  where 

P = P o + A P + k p U  2 
j 

P = P + % p W 0 ,  2 
jo o 

P =  

u =  
W =  

W =  

0 

0 

static  ambient  ,environment  pressure, 

wind  speed  relative  to  the  cloud  (say, 10 m s-l> , 

updraft  speed  (say, 10 m s ) ,  and 

updraft  speed  at  the  updraft  base. 

-1 

Assuming  a  velocity  ratio  of  one  and  the  central  vortex  pressure 

coefficient  measured  by  Jordinson  for  the  velocity  ratio  closest 

to one, the  static  pressure  deficit  is  found  to  be  approximately 

AP = 0.1 mb.  The  trend  of  the  data  suggests  that  for  extrapo- 

lation  to  W/U =1 the  pressure  deficit  will  be  considerably  larger, 

perhaps 1 to 5 mb.  The  pressure  deficit  required  to  support  the 
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cyclonic  circulation  shown  in  Figure 1 in  Kropfli  and  Miller 

(1975)  may  be  estimated  using  the  cyclostropic  relation.  The 

calculat5on  gives a value  of AP = -0.2 mb. The  value  of W/U 

is  about  two.  The  cyclonic  circulation  below  cloud  base  for a 

hailstorm  as  measured  by  Connell  (1973)  is  shown  in  Figure 5. 

A AP = -2 mb  is  required  to.support  that  circulation. 

The  vorticity  for  the  latter  vortex  was  about 10 x l o e 3  s . -1 

The  vorticity  in  the  cyclonic  member  in  the  measurements  by 

Kropfli  and  Miller  was  about 4 x s-'. Margason  and 

Fearn (1969) measured  the  vorticity  of  the  wake  vortices  of a 

jet  in a crossflow  to be about  twice  the  value  due  to  potential 

flow  around a solid  cylinder  having  the  same  diameter  as  the 

orifice  of  the  jet.  The  exact  conditions  of  the  crossflow  were 

not  specified.  The  data  scaled  to  the  thunderstorm  vortex 

diameter  of  four  kilometers  implies a vorticity  of 30 x s-'. 

The  evidence  is  strongly  suggestive  that a properly  formed 

jet  in a crossflow  could  be a useful  physical  model  of  certain 

processes  for a cumulonimbus  in a vertical  shear  of  the  horizontal 

wind.  Unlike  the jet in  the  laboratory, a cumulonimbus  must 

derive  its  updraft  velocity  from  buoyancy  as  well  as  from  the 

non-thermodynamic  process  of  momentum  deflection. In the  next 

section  the  concept  of  the  non-thermal  mechanism  as a controlling 

influence  on  the  buoyancy  force  is  briefly  explored. 

9 
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5.  A mechanism  for  modifying  motion  and  intensity. 

. .  An updraft  collides  with  the  wind  from  the  environment  in  the 
. .  

upwind'  edge  of the' cloud  and  the  interaction  produces a pair of 

leesfde,  lateral,  contrarotating  vortices  oriented  somewhat 

syrrnnetrically with  respect  to  the  vector of the  environmentat 

wind  relative  to  the  updraft  wind.  For  certain  achievable 

. .  

. ,  . .  

Reynolds  numbers  the  vortices  will  be  .nearly  stationary  with: 

respect  to  the  cloud.  They  will be most  intense  at  the 

height  at  which  the  bending  forces  on  the  updraft  are  strongest 

(Platten  and  Keffer, 1968). It seems  that  this  region  usually 

would  be  in  the  first  few  kilometers  above  cloud  base  where  the 

inflow-updraft  first  collides  with  the  environment  wind. 

Figure 6 contains  an  adaption  of  the  doppler-derived  winds tn 

a thunderstorm  presented  in  two  of  the  figures  by  Kropfli  and 

Miller (1975). The  updraft  bending  and  the  leeside,  lateral, 

contrarotating  vortex  pair  are  quite  apparent  in  the  zone  of 

collision. 

A hypothetical  airflow  configuration  for a cumulonimbus  is 

shown  in  Figure  7.  Figure  7a is a side  view  from  the  south  and 

Figure b is a top  view  showing  the  inflow  passing  under  the 

right  lee  vortex low pressure  center.  There  would  be a tendency 

for  this  inflow  toward  the  updraft  region  to  be  lifted  in 

the  front  right  quadrant of the  storm  more  than  in  the  other 

quadrants.  If  the  inflow  were  from  the  left,  then  it  would  be 

enhanced  by  the  left  vortex. Thus a tendency  toward  left  or 

right  deviation  of  the  development  of  new  cloud  cells  would  be 

affected  by  the  lateral  contrarotating  vortices  and  the  low- 

10 
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level  inflow  from  the  left  or  right  of  the  direction  of  the  wind 

in.  .the  .cloud  layer. 

.If ,the  Reynolds  number  should  increase  to  above  about . .  
:e. 

2500, then  regular  or  irregular  streets  of  vortices  would  be 

generated.  These  vortices  could  cause  storm  splitting  or 

generation  0.f  additional  separate  clouds.  Laboratory  experiments 

with  jets  in  crossflows  have  shown  streets  of  axially  elongated . . . _ . :  

vortices  whose  cores  are  suggestive  of  tornado  vortices , ' 

(McAllister, 1968). 

Another  situation  of  interest is crossflow  when  the  whole 

cumulonimbus  is  rotating.  The  author  has  performed  some  tracer 

experiments  with  a  swirling  jet  in  a  crossflow. A modest  cyclonic. 

swirl  enhanced  the  right  lee  vortex  and  diminished  the  left lee. , 

vortex.  This  effect  might  lead  to  a  correct  explanation  of 

why  radar  echoes  often  show  the  right-hand  lee  vortex  but  not 

its  anticyclonic  left  counterpart  (Lemon, 1974). 

6.  A concluding  remark. 

The  effect  of  non-thermal  forcing  of  a  cumulonimbus  in  a 

crossflow  is  surely  imbedded  with  other  effects.  Thus  very 

specific  conditions  and  measurements  may  be  required  to  test 

the  hypothesis  in  the  field.  On  the  other  hand,  simulations in' 

the  wind  tunnel  using  correct  vector  wind  shear  relationships  and 

velocity  ratios  could  be of value  for  understanding  real 

. .  

cumulonimbi. If valid  scaling  of  wind  tunnel  results  could  be  done, 

then  a  simpler  numerical  scheme  for  three-dimensional  modeling 

of  some  thunderstorms  could  result. 

.. . 
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LEGENDS 

Figure 1. Non-dimensionalized  shape  of  the  axis  of a round j e t  

in a uniform  crossflow  as a function  of  initial angle 

of  the  jet.  (Adapted  from  Margason  and  Fearn, 1969). 

Z - vertical  distance  from  orifice, X is  downwind 

distance  and, D is  the  diameter  of  the  orifice. 

Figure 2. Streamlines  in  the  vertical  plane  of  symmetry of a 

round  jet  in a crossflow  for  W/U = 6 (Jordinson, 

1956). 

Figure 3 .  Total  pre.ssure  coefficient  isopleths  in  the  vertical 

plane  of  symmetry  of a round  jet  in a crossflow  for 

W/U = 6 (Jordinson,  1956). 

Figure 4. Total  pressure  coefficent  isopleths  in a cross section 

plane  at Z/D =2 for a round  jet  in a crossflow  with 

W/U = 4 (Jordinson,  1956). 

Figure 5 .  Cyclonic  circulation  at  cloud  base  of a hailstorm. 

Light  solid  lines  are  streamlines.  Dashed  lines are 

isotachs  of  horizontal  wind  labeled  in  knots 

(adapted  from  Connell,  1973). 

Figure 6 .  Schematic  airflow  in a thunderstorm  based  upon  an 

extrapolation  of  the  dual-doppler  data  presented by 

Kropfli  and  Miller  (1975).  (a)  Side  view  showing 

strong  collision  zone  by  heavy  dashed  line. (b) Top 

view  of  the  vortex  pair  at  about  the  height  of  the 

heavy  dashed  line  in (a). 
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Figure 7. Side and  top views of a model .cumulonimbus, updraft in, 
. .  

a  crossflow  which generates low-pressure leeside 

lateral vortices. The low . .  level inflow is shown 

passing under the.  r.ight  vortex. The plus and minus 

signs denote pressure'axcess and deficiency regions 

. ,  
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Chapter 111 

Subcloud  vortices'  of a hailstorm. 

I. Introduction 

Airflow  in the subcloud  inflow  and  updraft  region  of  the 

26  May  1972  Cheyenne  hailstorm  was  investigated  using  two 

research  aircraft.  One  aircraft  performed a horizontal  mapping 

pattern  just  below  cloud  base.  The  second  aircraft  executed 

several  quasi-vertical  arrays  of  horizontal  tracks  across  the 

inflow  to  the  updraft  from  near  the  surface  to  the  earth  up to 

cloudbase  height  ten  to  fifteen  kilometers  ahead of,the 

precipitation curtain. Figure 8 shows the  horizontal projection 

of  the  tracks  of  both  aircraft  relative  to  the  second  hailswath. 

Aircraft  observations  were  made  for 1.5 hours  before  hail  ceased 

to  fall.  The  first  direct  measurement  of  time  variation  of a 

subcloud  ten  kilometer  scale  cyclonic  circulation  near  cloud 

base  was  achieved.  Existence  of  the  vortex  and a possible 

mechanism  of  formation  of  pairs  of  contrarotating  vortices 

having  pressure  deficits  of  the  order  of  one  millibar  was 

reported  orally  at  the  8th  Conference  on  Severe  Local  Storms 

(Connell,  1973).  The  mechanism  has  been  elaborated  further  in 

terms  of  vertical  shear  of  wind  velocity  and  of  scaling  from  wind 

tunnel  observations  of jet in a crossflow  using a velocity  ratio 

and a turbulence  Reynolds  number  (Connell,  1975).  Recently  dual- 

doppler  radar data (e.&, Kropfli  and  Miller,  1975)  have  shown  the 

existence  of  contrarotating  eddy  pairs  in  the  near lee of a 

cumulonimbus  upwind  edge.  The data seem  clearly to confirm 
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aspects  of  the  hypotheses  of  Connell (1973) and  Lemon (1974.) 

This  paper  presents  an  analysis  of  some  of  the  observations 

of  the  Cheyenne  hailstorm.  The  vortices  and  their  movement 

are  discussed  with  reference  to  the  concept  of a pair  of 

contrarotating  vortices  formed  in a cumulonimbus  in a wind  which 

shears  with  height. 

2. A brief  history of the  storm. 

The  thunderstorm  apparently  formed  early  in  the  afternoon 

in  the  Laramie  Valley,  moved  eastward  across  the  Laramie  Range 

and  downslope  at  an  average  velocity  of 7 m s-' from 290 deg 

true.  The  movement  was 40 deg  to  the  right  of  the  mean 

cloud-layer  wind.  The  storm  hailed  once  west  of  Cheyenne  and 

produced  an  extensive  swath  along  the  north  edge of Cheyenne 

during  the  second  severe  hailfall.  The  storm  apparently  split 

during  the  second  hailstorm,  the  left  and  right  members  moving 

to  the  left  and  right  of  the  wind,respectively.  Subsequently, 

the  separate  weakened  rainstorms  drifted  with  the  wind.  Figure 

9 is a pen  sketch  of a satellite  photograph  at 1536 MDT showing 

the  synoptic  weather  system  and  the  Cheyenne  Thunderstorm  at 

about  the  time  of  formation  of  the  first  hailswath  west  of  the 

city.  The  cumulonimbus  formed  at  the  edge of the  synoptic  sub- 

sidence  in  conditions  of  rising  atmospheric  pressure.  The 

average  early  track  and  the  split  tracks  are  superimposed  upon 

the  sketch.  Figure 8 shows  the  geometry  of  the  second  swath 

where  the  storm  apparently  split. 
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3 .  The  right-moving  member. 

Figure 10 shows  the  windfield  at cloudbase.of the  south 

member of the  split  pair  for  short  time  intervals  centered on 

1830, 1835, 1840 and 1843 MDT. A cyclonic  circulation  appears 

to  have  had  .a  diameter  of  about 20 kmand to  have  moved  with a 

mean  velocity  of 6 m s-' from 285 deg  true.  This  was  very 

closely  the  same  velocity  with  which  the  storm  moved  from LAR 

to CYS. Figure 11 contains  profiles  of  wind  speed  and  direction 

at  the  nearest  rawinsonde  station, GVR, 90 kmto the  southeast 

for  the  approximate.-times 0730 ,  1030,  1400, and 1700 MDT. 

The  average  wind  direction  in  the  cloud  layer  was  about 250 

deg  true;  thus  the  unsplit  storm  and  the  south  member  after 

the  split  moved  on  paths 35 to 40 deg  to  the  right  of  the wind. 

Figure 8 shows  winds  near  cloudbase  on  the  inflow  edge of the 

south  member to have  come  from  about 150 deg.  The  inflow 

entered  the  storm,which  was  right-moving, at an  angle  of 100 deg 

from  the  right  of  the  cloud-layer  wind. 

The  cyclonic  circulation  of  the  south  member  dissipated  at 

about 1850 iIDT concurrent  with  updraft  weakening.  The  storm 

drifted  with  the  wind as observed  from  the  aircraft  and  from 

Limon  radar  which  just  reached  the  storm at the  limit  of  the 

radarscope  range. 

4. The  left-moving  member. 

At  about 1825 MDT the  aircraft  began  measurement  of  the  pair. 

As can  be seen by  reference  to  Figure 8, the  (weak)  updrafts  at 

cloudbase  showed  no  appreciable  horizontal  circulation or, at 
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most, a cyclonic  circulation  with a diameter  greater  than 100 

km. According  to  the  model  of a strong  crossflow  around  the 

thunderstorm,  an  anticyclonic  circulation  should  have  existed 

with;the left  member  prior  to  the  split  and  during  its 

movement  to  the  left  of  the  wind. 

Evidence  for  left  movement  and  for  anticyclonic  circulation 

is  circumstantial.  The  primary  indication  of  left  movement  is 

that  the  last  part  of  the  hail  swath  deviates  strongly  to  the 

left  at an angle  from  215  deg  true  or 35 deg  to  the  left  of 

the  cloud-layer  wind.  This  is  consistent  with a split  whose 

motion  was  symmetric  with  respect  to  the  direction  of  the  wind. 

The  second  aircraft  moved  slightly  closer  to  the  north 

storm and  executed a set  of  vertically  stacked  legs  in  front  at 

heights of 1800, 1940,  2260  and  2860 m MSL. Ground  level  was 

at  about 1600 m MSL. Figure  12 (a)  shows  the  height  and 

length of the  tracks,  and  Figures 12  (b), (c), (d) and (e) 

contain  maps  of  the  track  and  winds  at  each of the  heights, 

respectively.  Anti-cyclonic  shear  or  circulation  appearsweakly 

at  2860  and 1800 m, perhaps  as  remnants of a dissipating  left 

member  of a contrarotating  pair.  The  storm  was  drifting  with 

the  wind.  The  diameter  of  the  anticyclonic  region  was 10 and 

20 b a t  the  two  heights.  All  indications  are  that  the 

inflow  came  from  the  west  and  southwest.  Additional  evidence 

from  vertical  motion,,potential  temperature  and  water  vapor 

mixing  ratio  will be presented  later. 
, .  
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5 .  Additional  features  of  the  right-hand  member. 

. A  visual  vault  was  seen  most  clearly  from  the  cloudbase 

aircraft  approaching  the  storm  from  the  location  labeled  1825 

in  Figure 10 (a).. A'sketch of the  side  view of the  storm 

from  that  location  is  presented in'Figure 13. The  vertical 

extent  of  the  vault  was  estimated  to  be 0.2 to 0 . 4  kmand  it' 

was  about 0 . 5  to 1 k m  wide. It extended  for  about 8 k m  

horizontally  parallel  to  the  rain  curtain. On the  first  pass 

under  the  cloudbase  the  aircraft  flew  to  the  east  of  the  vault 

and  measured  two  tipdraft  maxima on opposite  sides  of  the  cyclonic 

circulation. On t5e return  leg  the  track  curved  under  the 

valut  and  over  the  forward-sweeping  rain  curtain.  Turbulence was 

not  observed  as  the  aircraft  passed  from  the  updraft  to  the  vault 

region  where  there  was a downdraft  maximum  of  about 8 m s-l. 

The  vault  vanished  later  at  about  the  same  time  as  the  cyclonic 

circulation  dissipated.  Apparently  dry  wind  from  some  upper 

level  descended  across  the  precipitation  in  the  cloud  to 

create a locally  higher  cloud  base  or a vault.  The  vault  air 

was pa.rt  of  the  cyclonic  circulation. 

6 .  Vorticity  and  pressure  defect. 

The  cyclonic  circulation  at  cloud  base  had a calculated 

mean  velocity  of 0.4 x s-' at 1839 MDT. A linear  decrease 

of  vorticity  at  this  rate  would  result  in  the  demise  of  the  circu- 

lation  after  about  thirty  minutes,as  was  observed.  The  anti- 

cyclonic  shear  on  the  left  member  of  the  storm  had a calculated 

value  of  mean  vorticity  of 1.8 x s-I. 
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Using  the  cyclostropic  relation a rough  estimate  of  the 

pressure  defect  required  to  support  the  observed  or  inferred 

circulations  may  be  calculated.  For  the  cyclonic  circulation 

the  maximum  defect  would  have  had  an  average  value of 0.2 mb. The 

anticyclonic  circulation  would  have  had a central  pressure 

reduction  of  about 0.5 mb. 

7 .  A hypothesis  concerning  wind  shear  and  dynamic  effect  of 

The  '1653 MDT GVR sounding  measured a magnitude  shear of 

crossflow on a cumulonimbus. 

cloud  layer  environmental  wind of 3 x s-l petween 3 k m  

(cloud  base)  and 6.5 kmMSL. Above 6.5km the  pean  shear  was 

weakly  negative. It would  appear  that  shear  at  the  upper  part 

of  the  cloud  was  not  needed  to  make  it a severe  hailstorm. 

Considering  the  wind  relative  to  the  cloud,  the  shear  produced 

i ts  direct  dynamical  effect  in  the  layer  from  about 1km to, 

3.5km above  cloud  base. It is  suggested  that  the  essential 

mechanism  for  growth  into a severe  hailstorm  was  developed  from 

the  collision  between  the  updraft  near  the  back  of  the  cloud 

and  the  winds of maximum  speed. 

Some of the  wind  was  forced  down  through  cloud  base  to  exit 

in  the  vault  adjacent  to  the  precipitation  on  one  side  and  the 

updraft  on  the  other.  The  wind  was  forced  around  the  sides  of 

the  updraft.  and  downdraft,  as  was  some  of  the  updraft,  forming 

a pair  of  contrarotating  eddies  about  half  the  diameter of the 

the  eddies  formed  and  appeared  to  remain 

with  respect  to  the  moving  storm,  the 

parent  storm.  Since 

as a pair  stationary 
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turbulence  Reynolds  number  corresponding  to  the  process  must 

have  been  somewhere  around  the  range 1500 to 3000 (McAllister, 1968; 

Connell, 1975). An estimate of the  Reynolds  number  for  the 

Cheyenne  storm  is  calculated  as  follows: 

Re = vD/5 = 10 m s x 20 krn/100 m s- 

Re = 2000. 

-1 2 1  
T 

T 

Such  vortices  can  occur  quite  close to the  upwind  side of 

the  storm  in a fashion  analo.gous  to  other  fluid-stream  obstacles 

to a crossflow. The.radar data  by  Kropfli  and  Miller (1975) 

show  this. 

A hypothesis  for a relation  between  the  vortex  pair,  the 

direction  of  the  low-level  inflow  and  the  deviation of the  track 

of a thunderstorm  from  the  direction  of  the  mean  cloud-layer 

wind  is  presented  in a separate  note  (Connell, 1 9 7 5 ) .  Perhaps 

the  process of splitting  by  left  and  right  deviation  is  sometimes 

due  to  the  existence of two  lateral  and  opposing  wind  directions 

in  the  source  air of the  storm  concurrent  with  the  existence 

of a pair of contrarotating  vortices  in  the  updraft. 
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Figure 8.  Map  projection  of  the  flight  paths  relative  to  the 

hailswath  at  Cheyenne.  Wind  velocities  are  indicated. 

Figure 9. A sketch  of  the ESSA 9 visual  photograph of the  western 

U.S. showing  the  Cheyenne  Thunderstorm  at  1536 MDT 

as a closed  hatched  line.  The  mean  track  of  the  storm 

from LAR to  CYS  is  indicated  by a double  solid  line. 

The  probable  tracks for the  split  pair  after CYS are 

indicated  by  single  solid  lines.  The  synoptic- 

scale  cyclone  clouds  are  centered  on  northern  Montana. 

Figure  10.  Thirty-second  average  winds  at  cloudbase  of  the  south 

member  at  four  successive  times.  The  rectangles 

locate  best-estimate  centers  of  the  circulation. 

It's  mean  velocity . .  is shown in.Figure 10 (d) 

Figure  11. GVR wind  soundings  at  about 0730( * - )  , 1030( -- ) , 
1700 (-) . 

Figure  12.  Tracks  and  measured  wind  velocities  for  the  aircraft 

which  flew  in a vertical  plane  ahead of the  left  member 

of the  storm.  (a)  The  tracks  shown  in  the  plane of 

the  tracks. (b), (c) , (d) and  (e)  horizontal  maps of 

track  and  winds  at  1800 m, 2260m & 2860m  MSL 

respectively. 

Figure  13. A sketch  of a view of the  south  member of the 

thunderstorm  from  the  southwest  showing a visible 

vault . 
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Figure 14. Estimated streamlines and isotachs (knots)  at 1830 

to 1840 MDT at cloudbase of the  south  member of the 

thunderstorm pair. Regions of observed updraft and 
. .  

downdraft maxima  are indicated by U and D respectively. 
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Chapter IV: . 

A tornadic  thunderstorm  case  study 

I. Introduction ' 

The.  second.  tornado  in .a sequence  from a rapidly  developing 

Cb 1ine.was observed  throughout  its  life  cycle  from  the  ground . 

and.from the  air  on 6 July  1972  in  Northeast  Colorado.  Some 

measurements of temperature,  water vapor, and  three-dimensional 

motion of the  subcloud  tornado-active  region  of  the  parent  storm 

were  made  by  two  research  aircraft.  This  paper  presents a 

preliminary  composite  and  interpretation  of  data  which  shows 

(1) tornado  subrotations  in  size or, bett.er,  superrotations  in 

intensity  which  may  b,e  "Suction  vortices"  (Fujita,  1971)  and 

(2) interaction  of  motions  on  the  mesoscale,  cloud  scale, 

"cell"  scale,  tornado  scale  and  "subrotation"  scale. 

* 

2 .  Cloud  line  and  vertical  soundings. 

The  cloud  line  started  in a,small area  northwest  of  Sterling, 

Colorado  (see  the  map of PPI radar  echoes  in  Figure 15). The 

echo  grew  southeastward  at  speeds  varying  from 10 to 35 m s-I. 

The  second  tornado  occurred'at  the  south  or  leading  region  of  the 

developing  line  under  the  updraft  cloud  and  in  the  clear  air 

several  miles  from  the  edge  of  the  precipitation  (Figure  15c). 

* From  the  National  Center  for  Atmospheric  Research  under 
the  auspices . of  the  National  Hail  Research  experiment. 
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A  ground  survey  indicated  that  tornadoes  occurred  sequentially  at 

the  locations  marked  with  triangles  on  Figure 15. 

The  spatial  variations  of  environmental wind, water  vapor, 

and.temperature  are  shown  in  the  soundings  in  Figure 16 as  a 

function  of  time  for  the  region  of  tornadoes 1, 2, and 3. 

Several  features  stand  out: (1) The  cloud  layer  winds  were 

nearly  uniform  in  direction  with.  height (280-310 deg)  but ,with a ... 

strong  suggestion of gravity  waves,especially  upwind (KMB, . , 

Figure  16d) of the  Cb  line  late  in  the  day. (2) At  the  storm . L  

initiation  region  the  low-level  winds  were  from 80 deg  and  had  a 

local  peak  of  speed  from 120 deg at about 2 km above  the  ground 

at the  time  of  cloud-line  initiation  (STE,  Figure  16  c,d). (3 )  

Apparent  middle-level  high-speed  wind  subsidence  occurred  upwind 

of  Sterling (KBM and GVR Figure 16 b,c). ( 4 )  The  ground-level 

water  vapor  content  at  STE  peaked  at  nearly 12 g/kg,and  the 

temperature  peaked  at 30 C at 1400 MDT.  Using  the 1400 MDT 

sounding  it  is  estimated  that a parcel  lifted  from  the  surface 

would  have  experienced a +9C local  temperature  excess  at 500 

mb. (5) Strong (4 to 7 x s-l) wind  shear  existed  in  middle 

and  high  tropospheric  levels  respectively  separated  at  all  stations 

except  STE  by  a  region  of  nearly  zero  shear. 

3 .  Tornado  life  cycle. 

The  tornado  developed  from  a  group , .  of  dust  devils  along  an 

eastmoving  shear  or  surge  line  at  the  surface  of  the  earth  under 

the  updraft  cloud..  At 1645 MDT  one  dust  devil  began  to  grow  in 

a  pulsing  fashion  until  it  was  several  hundred  meters  in  diameter 

. ... , 
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at  the  ground and was.visible  up to about  one  fourth  of the.dis- 

tance(500  m)  cloud  base.  Some  features of.the ensuing  tornado 

are shown in  Figure  17a  (photographs)  and  Figures 17 b (drawings:. 

highlighting,features  of  the  corresponding  photographs in _ .  . - .  

Figure 17a). The  vortex  extended  rapidly  upward  thereafter; 

and  appeared  to  "lock"  into  the  center  of  the  northernmost 

of two  updraft  pedestal  clouds  about 2 k m  in  diameter. A 

rapidly  rotating  collar  cloud  formed  just  below  the  pedestal. 

Heavy  rain  and  hail  with  lightning  occurred  in  the  region 

2 km to 15 km north  of  the  tornado.  Ringlike  bumps 

(instabilities?)  and  vortex  "fingers"  recurred on, the  tornado 

circumference  at  various  heights.  Several  times  there  was 

little  visible  connection  between  the  lowest  and  next  lowest 

kilometer  of  the  tornado  (see  Figure  17b-8). 

The  track  of  the  tornado  was  toward  the  northeast  across 

or  into  all  environmental  inflow  and  cloud-layer  wind  directions 

except  during  its  dying  stage  when  it  moved  toward  the  southeast. 

The  upper  part  of  the  tornado  moved  more  to  the  northeast  than 

did  its  lower  part  such  that  it  attained  an  increasingly  northward 

tilt.  The  tornado  dissipated  in a weak  updraft,  leaving a 

nonrotating  dust  cloud  in  the  otherwise  clear  air  below  the 

cumulonimbus  base,  at  1715  MDT.  The  total  lifetime  was 20 minutes. 

One  or  two  surge  or  shear  lines  were  connected  to  the 

base  of  the  tornado  and  apparently  moved  slowly  about  it  in a 

cyclonic  direction.  Dust  devils  were  observed  to  move  rapidly 

along  them  into  the  tornado.  Small  diameter  cyclonic  vortices 
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of con.siderable  intensity  and 200 meters  high  frequently 

developedson  the  circumference  of  the  tornado.  They  moved 

around  it  cyclonically  at  about 1 revolution  per  minute, 

according  to  a  visual  estimate: --It appeared  that  the.  subscale 

superrotations  started  on  the  southwest  side  and  intensified 

until  they  reached  the  north  side  where  they  weakened  or 

sometimes  tended  to  be  separated  from  the  larger  diameter 

vortex.. 'The lowest 300 meters of.the tornado,  containing  the 

superrotations,  was  often.distinct  from  the  rest  of  the  tornado. 

Occasionally  this  base  region  t.ilted so as  to  lift  off  the  earth 

on  all  but  one  edge  near  the  side  of  superrotation  development. 

Sometimes  the  very  bottom 100 meters  or  less  was  half  the 

diameter  of  the  adjacent  higher-altitude  tornadic  rotation. 

The  surge  lines  and  superrotations  seem  to be good 

indications  that  a  significant  part  of  the  tornado  vorticity 

was  organized  in  the  lowest  several  hundred  meters of the  atmosphere 

at  the  shear  between  downward  southeast  moving  air  and  northwest- 

moving  inflow  to  the  updraft. 

4 .  Interaction  of  scales. 

A composite  of  features  of  the  thunderstorm  showing  the 

variety  of  scales  is  presented  schematically  in  Figure 18. 

A list  of  features  from  mesoscale  to  tornado  superrotation  size 

and  ranging  in  time  scales  from  hours  to  minutes  is  presented  in 

Table 1. 
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Table 1 

Flow features  of  the  storm  on  five  length  scales. 

A. Mesoscale (20-100 k m  Dia.) . -  

1. Midtropospheric  subsidence o r  downward  intrusion  upwind 

of Cb. 

2. Gravity  waves  especially  upwind  of  Cb. 

3 .  Sequence of tornadoes  at  intervals  As= 20 k m  

At= 40 min.  for 120 kmtoward 155 deg  true. 

4 .  Weak  jetlike  wind  at 2 k m  AGL. 

B. Cloud  scale (10-20 krn Dia) 

1. Horizontal  cyclonic  circulation  at z = 1.7 km AGL 

(approx. 0.3 k m  below  cloud  base).  Vorticity 

= 1 0  s . -3  -1 

2. Zone  of  horizontal  shear  on  south  edge  of  cloud  at 

z = 1.7 km AGL. 

C.  Cell  scale (1-5 kmDia.) 

1. 

2. 

3 .  

4.  

Cyclonic  circulation  or  shear  zone ( 4  k m  dia)  at 1 

k m  AGL  in  updraft. 

Strong  downdraft  at 1 kmAGL west  and  southwest of 

tornado  containing  cyclonic  motion  of  dry  air. 

Strong  updraft  at 1kmAGL south,  east  and  north- 

east of tornado  in  both  southeast  inflow  and  northwest 

outflow  to  cloud. 

Surge  line  at  and  near  tornado  at  ground  level. 
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(Table 1 Continued) 

D. Tornado  scale (0.2-1 k m  Dia.) 

1. Surge  line at tornado 

.2. Rotating  tornado  column 

. .  fl  

E.  Dust  plume  and  dust  devil scale (20-200 m). 

1. Extra-tornadic  boundary  layer  plumes  and  dust  devils, 

especially on surge  'lines. 

2. Superrotations within the  tornado 

3. Various  satellite  and  possible  "return"  vortices 

closing vortex-line circuits. 
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Briefly,  the  storm  line  development  and  propagation. 

seem to have  been  associated  with  an  upwind,  midtropspheric, 

sharp  subsidence  occurring  on  the  mesoscale  late in the  day 

at  the  edge  of  the  moist  air  zone  south  and  east  of  Sterling, 

Colorado  (see  Figure 16, GVR  and  KMB  soundings). 
. .  I 

I .  

Single  tornadoes  developed  at  intervals  of  about 20 , .  

kmfor at,least 120 k m  along  the  line. A preliminary  estimated 

value  of  the  average  time  intervals  between  tornadoes  is 

40 minutes.  Cloud-scale  cyclonic  convergence  was  observed , _  

on  the  south  end  of  the  line  at 1 . 7 k m  AGL  or  about 0.3 

kmbelow cloud  base  (Figure  19a)  at  the  time  of  tornado 

number 2. 

Several  features  of  the  observed  second  tornado  in 

the  series  were  in  the  one-to-five  kilometer  size  range, 

which  is  here  called  the  cell  scale.  At 1 k m  AGL, or 1 k m  

below  cloud  base,  either  a  cyclonic  shear  zone or one of a 

pair  of  circulations  was  observed  moving  or  extending  from 

the  southeast  edge  of  the  tornado  region  in  the  direction  of  the 

line  of  propagation  of  the  storm  (Figures  19a,b).  That  cyclonic 

flow  was  also  a  strong  updraft.  On  the  southwest  and  west 

side, at 2-3 k m  from  the  tornado,  the  airflow  was  a  strong 

downdraft  which  was  relatively  dry  and  cool  (Figure  19a). 

This  is  suggestive  of  an  upper  source  for  a  surface  surge  line, 

where  the  source  wind  sheared  against  the  southerly  and  easterly 

inflow-updraft  air.  Photographs  and  visual  observations  indicated 

one  or  two  dust  lines  extending  from  the  tornado  in  the  first 
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few  hundred  meters  above  the  ground  for  horizontal  distances 

up  to  several  kilometers  generally  in  the west, south,  and 

slightly  southeast  sectors  (Figures 17b-4-6-9 and 13). The 

tornado'  seemed  to  remain  in  this  zone  near  the  ground  and  to 

move  northeasterly,  although  directions  of  the  cloudline 

growth,  cloud  layer  environmental  winds,  and  inflow  winds 

were  nearly  orthogonal  to  this  direction. 

The  average  speed  of  movement  of  the  tornado,c,  was 1 

about 7 m sml over  an 8 k m  path. A tractor  raced  it  at  late 

middle  life  measuring c = 10 m s . The  upper  part  of  the 

tornado  moved  more  northward  as  though  it  were  in a cloud- 

scale  cyclonic  rotation. 

-1 

The  base  of  the  tornado  was  about 400 m in  diameter. 

Dust  devils  and  dust  plumes  up  to 30 to 100 m diameter 

(0.20 to 1 k m  high)  were  observed  along  the  surge  fronts 

and  were  seen  by  ground  observers  to  be  moving  rapidly  into 

the  tornado.  Additionally,  cyclonic  superrotations  were 

observed  forming  and  revolving  around  the  periphery  of  the 

tornado.  Their  diameters  were  about 50 m to 100 m and  their 

heights  were  about 300 m.  Figures 6a, 6b  and  6c  are  drawings 

from  photographs  which  show  some  space  and  time  variations of 

the  superrotations.  The  two  ground-based  photographs  were 

taken  about  four  minutes  apart.  The  lowest 300 m of  the  tornado 
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appeared to-be the  source of vorticity  for  other  altitudes . .  

in  the,tornado. Both  local  organization  and  transport  of . 

vorticity  from  below  seem  to  have  contributed  to  the  tornadic . 

vortex  near cloud'base. However,  the  special  properties of the 

lower  atmosphericboundary  layer  tornado  appear  to  result  in 

considerably  greater  organization  and  intensity  of  its 

superrotations  than  any  near  cloud  base.  The  tops  of  the 

superrotations  seem  to  occur  distinctly  and  uniformly. 

Sometimes  apparent  extensions of their  tops  bent  outward  and 

downward  at a larger  radius,  producing  visible,  nearly  closed, 

vortex  rings  (see  left  side of Figure 20c).  Much of what 

previously  has  been  thought  to  be  ejecta  near  the  base  of a 

simple  vortex  may  be  visible  effects  of  these  superrotations. 

5. A few  quantiti3re  estimates. 

Vorticity, c ,  may be estimated on five  scales.  On  the 

cloud  scale  at  z=1.7 k m  AGL, 5; 2& 2v/r 2  x 15'm s - l /  

10 m = 3 x s-I .  On the  cell  scale  at z =1 krn AGL, 4 

c= 2v/r A 2 x 7.5 m s /1.5 x 10 m = 10 s . Assuming  that -1 3 -2 -1 

the  zone  of  shear  along  the  surge  line  has a width  represented 

by  the  largest  dust  plumes (200 m) and using  typical  wind 

speeds, <= W/an = 20 m s . It is  possible  that  such  shears 
-1 

on  the  surge  surface  exist  only  near  the.  surface of the  earth 
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where-  the  down  air  penetrates  sharply  to  meet  the  inflow 

(see  the  wind  map  Figure  19a).  The  probable  source  of  surge 

air  (strong  down  air  and  weak  wind)  at z =1 krn is  about 3 k m  

west  and  northwest of the  position of the  tornado at-the . ,  

ground. 

On  the  tornado  scale  the  velocity of rotation  estimated . . 

by  one  aircraft  pilot  was 40 m s-I. Damage  to  a  barn  and  wind . 

effects  on  a  farm  interpreted  according  to  Fujita  (1971b) 

suggest  a.similar  speed.  From  visual  estimates  and  photographs. 

of  the  tornado,  its  base  diameter  was  about 400 m. Therefore,. 

its  vorticity  was  about  2  v/r=2 x 40 m s-'/200 m = 4 x 10 s . -1 -1 

The  propagation  speed of the  radar  echo  (toward 150') at 

the  tornado  time  was  about 12  m/sec.  The  cell  size  vortex 

measured  at z = 1km AGL appeared  to  move  as  an  entity  at 

9 m s-l toward  about 150°. In another  paper  by  Connell  and 

Kimbrough  titled  "Subcloud  Vortices of a  Hailstorm''  it  is 

suggested  that  lee  vortices  whose  diameters  are  about  half  of 

a  thunderstorm  diameter  are  to  be  expected  due  to  the  wind 

crossflow  around  the  updraft.  Some  wind  and  water  tunnel  results 

applied  to  thunderstorms  in  that  paper  suggest  that  these 

vortices  will  be  stationary  relative to,  say, the  interface  of 

the  colliding  wind  and  updraft  air  streams  for  turbulent 

Reynolds  number  values  in  the  low  thousands  and  will  tend 

toward  Von  Karman  vortex  streets  at  slightly  higher  Reynolds 

numbers. 
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The  cell-scale  vortices  observed  in  the  present  study  may 

be of the  stationary  type  relative.to  a.  collision  interface. , ,  

A crude  estimate  of  the  Reynolds  number may.be made  by 

considering  that..the  inflow  speed  is  15  m s-l and  the , .  

environmental  cloud  wind  at,  say, 4 k m  AGL is  about 10 m s-'. 

Therefore, 

Ret 15 (to 20) m s-' x 5 (to 10) k m  = ,750 to 6700 

30 (to 100) m s 2 -1 

A value  of  Re  less  than 1500 is  expected  to  represent  conditions 

for  a  stationary  vortex  pair  downwind  of  the  updraft,  whereas, 

Re  greater  than 1500 is  for  a  vortex  street  which  is  steady 

(Von  Karman  type)  for  Re  less  than  about 2500 for  solids  and 

perhaps  greater  for  air  updrafts  (McAllister, 1968, p. 3 3 ) .  

The  cores  of  the  trailing  vortices  in  water  tunnel  experiments 

of a  jet  in  a  crossflow  are  surprisixly  like  tornadoes.  The 

present  author,  in  some  qualitative  wind  tunnel  experiments 

with  a  rotating  jet  in  a  crossflow,  found  whole-jet  rotation 

to  enhance  the  similarly  rotating  trailing  vortex  and  to  tend 

to  suppress  the  oppositely  rotating  vortex. 

6. Tentative  conclusions. 

The 6 July 1972 N.E.  Colorado  number 2 tornado  appears 

to  have  been  formed  when  a  source  of  very  strong  vorticity 

organization  near  the  surface  of  the  earth  was  coupled  for 

twenty  minutes  to  a  source  of  vorticity  one  order of magnitude 

weaker  at  higher  levels  by  strong  updrafts  in  the  subcloud 

region.  The  lower  source  at  a  surge  line,  may  have  been 
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associated  with  upwind  mesoscale,  mid-level,  downward ' 

intrusion  of  air  interacting  with a cyclonic  cloud  scale 

circulation.  The  upper  source  may  have  been a lee  vortex 

due  to  collision of the  thunderstorm  updraft  with-  the 

crossflowing  environmental  wind.  The  pair  of  lowered  regions 

of updraft  cloud  base  (pedestals)  may  have  been a result  of 

two  such  lee  vortices  whose  slightly  lesser  central  pressure 

caused  the  downward  extension  of  cloud  base. 

Subrotations  in  size,  which  are  superrotations  in 

cyclonic  wind  speed  and  which  formed  around  the  circumference 

of  the  bottom  portion  of  the  tornado,  appear  to  have  been 

a result  of  boundary  layer  rotations  and  inflow  processes. 

Somewhat  similar,  more  diffusely  organized  vortices  near  cloud 

base  seem  to  have  been  independent  of  them.  The  nature of 

damage  at  the  ground  suggests  that  it  was  caused  by  the  smaller, 

circumferential  boundary  layer  superrotations. 

I 
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LEGENDS 

Figure 15. Ten-cm-radar PPI contoured  images  at  about 2 . 5  Km 

AGL in N . E .  Colorado on 6 July  1972: (a) rawinsonde 

sites  and  tornado  locations, (b) early  aborted 

development, (c) (a), and  (e)  tornadic  thunderstorm 

at  several  times. 

Figure 16. Vertical  atmospheric  profiles: (a) temperature, (b) 

dew  point  temperature, (c) wind  speed  and (d) wind 

direction  on 6 July, 1972  at  the  four  stations KMB, 

GVR,  STE, FTM shown  in  Figure 15 Soundings  are 

shown  for  approximate MDT times  (symbols) 0730 (xxx) 

1100 ( * * a ) ,  1400(- 3 , 1630 (---) and 1800 (-). 
KMB:  Kimball,  Neb.,  GBR:  Grover, Colo., STE:  Sterling, 

Colo. FTM: Fort  Morgan, Colo. 

Figure  17a.  Photographs  of  the  life  cycle  of  tornado  number  two  in NE 

Colorado  on 6 July, 1972. Time  span  is  approximately 

20 minutes.  Exact  time  of  each  photograph is not  known. 

Figure  17b.  Tracings of photographs  in  part (a) highlighting  several 

features.  Arrows  indicate  the  horizontal  direction  from 

which  the  photograph  was  taken,  north  being  at  the  top 

of the  page. 

Figure 18. A schematic  composite  of  features  of  the  tornadic 

thunderstorm emphasizing interaction  of  scales.  View 

is  from  above  and  from  the  south.  AGL  means  above 

ground  level. 
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Figure 19. Composite  maps  of  aircraft  derived  properties  of 

the  subcloud  airflow  of  the  parent  storm  at 1 

Km and 1.7 Km AGL for  tornado  number 2, N . E .  

Colo. 6 July 1972. (a) Streamlines  and  tornado 

location (b) Isotachs & streamlines (c) - Water 
vapor,  potential  temperature.  Up  and  down  air- 

flow  indicated  by U & D respectively.  Plus & 

minus  signs  indicate  strong  and  weak  drafts. 

Tornado  location  at  an  intermediate  time  is 

drawn. 

Figure 20. Artist-enhanced  tracings  of  photographs  showing 

tornado  superrotations  and  dust  lines.  (a)  Aerial 

photographs  showing  superrotations  and 2 possible 

surge  lines. (b) Ground  photo  showing  small 

diameter  superrotations  in  the  lowest  few  hundred 

meters  and 2 possible  surgerelated  dust  features 

to the  south.  (c)  Ground  photo  for  same  location 

about 4 min.  later.  Note  tilt  and  lift  of 

superrotation  region  and  apparent  "return" 

vortex  from  top  of 2 superrotations. 
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Chapter V. 

A parameterized  model of non-thermal  dynamics  of  a  Cb  in  a 
crossflow. 

d 

The  mo.del  for  a  Cb  in  a  crossflow  is  schematically 

represented  by  Figure  21.  Figure  21a  represents  a  thunder- 

storm  and  Figure  21b  shows  a  jet  in  crossflow  with  normal 

incidence  for  which  useful  data  is  available  (Jordinson, 1956). 

The  jet  in  crossflow  data is parameterized  by  a  set 

of  non-dimensional  plots  of  pressure  and  pressure  geometry 

as  a  function  of  3-d  position  following  the  position  scheme 

indicated  in  Figure 22. 

Jordinson, 1956, has  produced  the  most  comprehensive  data 

for  a  jet  in  a  crossflow,  providing  jet  axis  shape,  pressure 

fields  at  several  axial  positions,  and  streamlines  along  one 

vertical  section  for  jet  to  wind  speed  ratios  of  four,  six 

and  eight. A small  amount  of  data  is  available  for  V/W  =2. 

The  jet  used  was  a  round  jet  of  air  issuing  orthogonally  into 

a  presumed  nearly  uniform  wind.  The  orifice  diameter  was 

1 inch,  the  boundary  layer  was  about 0.1 inch  high  at  the 

orifice.  The  center of the  orifice  was 1 . 5  inch  downwind  of 

the  leading  edge of a  false  floor  which  was 1 inch  above  the 

actual  floor. 

The  most  commonly  considered  property  is  the  geometry  of 

the  axis  of  the jet. Figure 23 shows  the  axis  shape  measured 

by  Jordinson  as  a  dashed  line  for  each  speed  ratio  V/W =8.1,. 

6.2 and 4.3, where.V is  the  speed  of  jet  air  at  the  orifice 

and W is  the  speed  of  the  freestream.crosswind.  Three 
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proposed  equations  for  the  axis  shape  are  given  at  the  bottom 

of  the  figure  and  are  plotted  at  three  values  of  downwind 

location. It is  seen  that  the  fits  have  maximum  errors  of 

about 30% near  the  orifice  and 25% at  x/d =11. The  errors 

are  greatest  for  smallest  velocity  ratios.  Ivanov's  equation 

is  the  best  fit.  The  equation  by  Margason  and  Fearn, 1969, 

has  been  developed  to  allow  for  non-orthogonal  initial  angies 

of  the  jet. It is shown in  Figure 1, chapter 2 along  with 
other  figures  from  Jordinson, 1956. Clearly  there  is  need 

for  much  more  experimental  data  for  jets  in  crossflows  to 

gain  accuracy  and  detail.  Nevertheless,  a  first  effort  can 

be  made  to  parameterize  the  jet  properties  according  to  the 

scheme  suggested  by  Figure 22. 

Figure 24 shows  the  separation  of  leeside  vortices, 

downwind  displacement  of  vortices,  their  diameter  and  central 

pressure  as a function  of  speed  ratio  V/W.  The  central 

pressure  deficit of the  vortices  is  highest  near  the  orifice 

where  the  crossflow  and  impulse  is  the  greatest  between  the 

jet  and  the  wind  (see  Figure  24a).  The  figure  also  shows  a 

strong  increase  in  maximum  pressure  defect  with  decreasing 

speed  ratio.  Figure  24b  is  a  semilogarithmic  plot  of  the 

pressure  coefficient  Cp max at  an  axial  distance <= 2.5 d 

as  a  function  of  V/W.  While  no  data  exist  to  validate 



a  semilogarithmic  linear  extrapolation  to  the  lower T/W 

appmpriate .for  thunderstorms,  such  extrapolation  is  shown  as- 

a  dashed"ext.ension  of  the  solid  line.  Thus  at  V/W = 2 one :' ' . ' .  

might  expect  more  than  a  doubling  of  the  low  pressure 

deficit  in  the  vortex  over  that  observed  at  V/W '4. 

Figure  24c shows the  symmetry  of  the  measurements  of  pressure 

defect  in  the  jet  for  left  and  right  vortices.  Figure  24d  is 

a  plot  of  the  lines  of  maximum  leeside  pressure  deficit  in 

the  (x,z)-  plane  in  relation  to  the  jet  axis.  One  important 

point  is  that  the  minimum  pressure  is  well  within  the  radius 

of  the  jet.  Another  is  that  the  low  pressure  is  closer  to 

the  "ground"  plane  for  smaller  values  of  V/W. 

A qualitative  conclusion  is  that  the  pressure  effect  of 

a jet  in  a  crossflow  on  the  low  level  airflow  corresponding  to 

thunderstorm  inflow-updraft  is  greatest  for  smaller  values  of 

V/W  and  thus  for  typical  thunderstorm  conditions.  This  leads 

one  to  suppose  that  the  influence  of  the  vortices  produced  by 

non-thermal  means  may  be  considerable  for  thunderstorm 

development.  Some  additional  factors  must  be  parameterized 

quantitatively  to  permit  description  of  the  influence.  The 

lateral  geometry  is  probably  the  most  significant. 

Figure  24e  shows  that  the  separation  of  vortex  centers 

relative  to  the  vortex  diameter  is  decreased  at  low  (and  high) 

values  of  V/W.  Thus  thunderstorm  conditions  of  V/W  should 

result  in  vortices  having  great  lateral  separation  since  they 

are  of  large  diameter. This provides  for  greater  off-center 
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effects  in  thunderstorms  such  as  deviate  motion  and  a  symmetric 

development  of  the  storms  whose  inflow  direction  is  not  parallel 

or  antiparallel  to  the  cloud  layer  winds  in  the  levels O F -  

strong  collision  in  crossflow. 

Figure  24f  is  a  plot  of  downwind  displacement  of the line 

of  centers  of  the  vortices  relative  to  the  jet  local  axis. 

Again;it  is  seen  that  the  diameter  of  vortices is.largest : 

for  low  V/W  near  the  "ground  plane". It is alm clear that 

the  absolute  downwind  displacement  for  V/W = 4 is less  near 

the  origin  of  the  jet.  Figure  24g  brings  this  out  more  clearly 

in  a  plot  of L/D (instead  of  L/d)  vs  V/W  (instead  of  D/d). 

The  next  step  is  to  compare  a  few  parameters  from  a  few 

observed  thunderstorms  with  those  for  the  jet  in  a  crossflow. 

There  is  precious  little  data  and,therefore,  the  comparisons 

of  identical  parameters  is  seldom  possible.  The  most  ,useful 

dual-doppler  data  is  that  published  by  Kropfli  and  Miller, 

1975. A  small  amount  of  radar  data  is  also  available  from 

other  reports,  and  when  used  it  is  identified  on  the  figures. 

Some  aircraft  data  are  available  in  Chapter 3 and 4 and  are 

not  repeated  in  the  present  chapter. 

Figure  25a  defines  the  parameters  in  the  context  of 

thunderstorm  airflow  and  geometry.  This  may  be  compared  with 

Figures  22a  and  b.  Instead  of  pressure  coefficients we  have- 

estimates  of  the  vorticity  of  the  left  and  right  vortices. 

Crudely speakingthere must  be  an  increase  in  central  pressure 

defect  for  an  increase  in  vorticity  given  a  constant  diameter 

of  all  vortices. 
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Figure  25b shows.that unlike the orthogonal  jet  in a 

crossflow  the  vortex  pair  is  less  symmetric  in  intensity. 

Furtheq  the  left  or  anticyclonic  member  is  immediately obvious 

only  in  the  .upp.er  'levels (Z/H>O. 6) .' , This  may  be  due  to whole 

cloud  cyclonic  rotation.  Figure  25.c  shows  the X-Z projection 

of  the  axes of the  vortices  in  the  .thunderstorm.  Considering 

the  difference  between  airflow  and  updraft  below  cloud  base 

and  the  wind  and jet flow  as  observed  by  Jordinson  (1956), 

there  is a strikin.g  similarity  between jet and  thunderstorm 

(Compare  25c  with  24d). 

Figure  25d  shows  that  the  vortices  generally  increase  in 

diameter  with  increase  in  height  from D = 4 k m  to 6km. 

Figures  25e  and f show  that  the  separation  of  vortices 

increases  with  height  from  about 1 to 2 vortex  diameters  or 

from  about  0.75  cloud  height  to  0.85  cloud  height. 

The  downwind  displacement  of  vortices  relative  to  the 

upwind  side  of  the  interaction  zone  between  airflows  increases 

with  height  except  in  the  lowest  levels  (see  Figure  25g). 

This  is  consistent  qualitatively  with  the  results  for  the 

jet in a crossflow  as plotted in  Figure  24g.  Figure  25h 

is a slightly  different  plot  of  displacement  vs  height  from 

that  in  Figure  25g (L/H instead  of L/D vs Z/H). 

In  summary,  there  are  many  similarities  between  the 

parameters of a jet in a crossflow  and of a thunderstorm  even 

when  the  available  observations do not  exist  for  corresponding 

initial  flow  directions,  wind  shears,  and  speed  ratios. 



These  parameters,  which  are  discussed  in  Chapter 2 relative 

to  their  influence on thunderstorm  development  and  in  Chapters 

3 and 4 $or.  specific.  thunderstorm  studies,  need  to  be  much 

more  accurately  and  fully  studied  in  controlled  conditions  such 

as  with a wind  or  water  tunnel. As field  measurement  programs 

can.be dir,ected  toward  adequate,  accurate  and  comprehensive 

measurements,the  more  easily  obtained  laboratory  data  to  be 

acquired  can  be  better  scaled  and  interpreted.> 

It is  obvious  that  without  more  and  better  data  the 

concepts  cannot  be  built  into a detailed  and  quantitative 

model. .However, the  results  of  the  study  described  in  the 

present  report  indicate  some  new  ways  to  interpret  mesoscale 

rawinsonde,  radar  and  satellite  data  in  order  to  develop a 

better  capability  for  predicting.  thunderstorm  development  and 

motion. 

The  main  clue  is  that  vector  wind  shears  just  above  and 

below  (+several  kilometers)  cloud  base  may  be  instrumental  in 

generation of vortex  pairs,  which  in  turn  affect  control  of 

cloud  processes  which  may  determine  intensity  and  movement of 

thunderstorms  as  suggested  in  earlier  chapters. 

The  next  chapter  presents a brief  sample  of  the  types  of 

radar  and SMS 1 satellite  photo  analyses  which  may  be  incorporated 

in a developmental  program of research  aimed  at  verifying  the 

concept  of  cloud  modification  through  vector  wind  shear  in 

small  layers  on  the  mesoscale. 
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LEGENDS 

Figure  21.  Models  of  Cb  and  jet  in  crossflow. 

Figure  22a.  Parametric  model  of jet or  Cb  in a crossflow 

Note: (1) DL-'  dia.  of  left  vortex 

Dr-  dia.  of  right  vortex 

D E dia.  of  single  vortex  or  mean  of 

left  and right, 

(2) The  pressure  defect  of  the low pressure 
centers  is  measured  by 

C = 'j et-'wirid p min- 'j orif iCe-'wind 

(3) The  mean  vorticities  -2w = v /r, AP 2 
using  cyclostrophic  assumption  are 
computed  for  dual-doppler  observations 
of  Cb. 

Figure  22b.  Top  view  of  vortex  features  of jet or  thunderstorm 

at  an  arbitrary  height. 

Note:  DL+DR 
2 

Z D  

Figure  23.  Shape  of jet axis  of  round jet in  crosswind. 

Figure  24a.  Maximum  pressure  deficit  in  wake  vortices. 

Figure  24b.  Maximum  pressure  deficit  as a semilogarithmic 

function  of  ratio  of jet velocity  to  wind  speed. 

Figure  24c.  Relation  of  maximum  pressure  deficit  to  velocity 

ratio  at  specified  distances  (in jet diameters) 

from  orifice  along jet axis. 
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Figure 24 d. 

Figure  24e. 

Figure  24f. 

Figure  24g. 

Figure  25a. 

Figure 24 b. 

Figure  25c. 

Figure  25d. 

Figure  25e. 

Figure  25f. 

Figure  25g. 

Lines  of  maximum  Cp  deficit  in  relation  to  jet 

axis.  (Measurement  stations  are  numbered.) 

Ratio  of  distance  between  vortex  centers  to  diameter 

of vortex  as a function  of  velocity  ratio. 

Downwind  displacement,of  the  line  of  centers of 

the  vortices  from  local  jet  axis. 

Displacement  of  the  line  of  vortex  centers  as 

a function  of  the  velocity  ratios. 

Parametric rhodel  of a Cb  in a wind  shear. 

Notes: (1) DL- dia.  of  left  vortex 

Dr= dia.  of  right  vortex 

D dia.  of  single  or  mean  of  L+r 

The  mean  vorticity -2w= v . and 2 
_. r 

Ap computed  using  cyclostrophic 

assumption  computed  for  dual-doppler 

observation  of  cumulonimbi  winds. 

Average  vorticity as a function  of  height. 

Location  of  vortex  centers  from  dual-doppler 

data  of  Kropfli  and  Miller. 

Average  diameter  of  vortices as a function  of  height. 

Separation  between  vortices  as a function  of  height. 

Ratio  of  separation  between  vortices  to  cloud 

height  as a function  of  height. 

Downwind  displacement of vortices  relative  to 
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the  upwind side of interaction  zone  between airflows. 

Figure 25h. Ratio of downwind displacement of vortices  to 

cloud height. 
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Chapter VI. 

Applications of AVE data  to  development  of a capab'i'lity'for 

predicting  thunderstorm  motion  and  intens'ity. 

The  non-thermal  mechanism  of a cumulonimbus  in a wind 

shear  is  expected  to  be  mo-st  significant  for  the  more  intense 

storms.  The  first  available AVE data  for  intenkive  storms.,is ' ' 

for AVE-IV, The  best  test  of  the  hypothesis  outlined  first 

in  Chapter. 2 is  expected  to  come  from  analysis  of  detailed 

vertical  profiles  of  wind  and  from  tracks  of  storms  as 

determined  by  radar  or  by  visual  tracking.  The  concept  of 

formation  of  leeside  low  pressure  centers  by  winds  in  collision 

may  be  used  two  ways.  First a model  may  be  rather  fully 

developed  from  direct  measurements  of a properly  formed  jet 

in a crossflow  and  adjusted  with  the  available  direct  measure- 

ments  of  thunderstorm  flow  and  motion.  The  model  may  then 

be  used  to  estimate,  by  kinematic  or  dynamic  means,  the 

deviate  motion  and  updraft  forcing  to be expected.  The  model 

is  then  to be tested  against  many  field  observations  in  which 

storm  track  and  intensity  and  environmental  shear  can  be 

measured. A high  success  rate  in  prediction  verifies  the  model. 

This  may  be  done  empirically  (cg.,by  noting a proportional 

difference  between  predicted  and  observed  storm  properties). 

The  second  method  of  using  the  model  concept  is  to  simply 

note  that  vector  wind  shear  in  small  layers  is  given  as  the 

critical  factor  in  determining  the  existence  of  pairs  of  leeside 

low  pressure  centers. It-is also  held  to  be  important  in 
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which  center  dominates  in  producing  deviate  motion  and  updraft 

control. A complete  model  is  not  required  since a direct 

prediction  is . .  not  made.  Instead,  the  wind  shear,  atmospheric 

stability  and  storm  motion  and  intensity  deviation  are  to  be 

correlated..in  a.multivariate  scheme  using  mesoscale  maps 

of these  propertie  and  perhaps  others  for  thin  layers  of  the 

atmosphere. 
' . 7. 

In chapter 5 it was pointed  out  that  present data do  not 

permit a very  complete  realistic  model of the  non-thermal 

mechanism.  Until  laboratory  experiments  can  be  made  to  provide 

data  for  the  whole  model,  the  direct  prediction  approach  is 

impossible.  Consequently,  the  multivariate  correlation  using 

mesoscale  data  is  to  be  used  in  producing  the  best  possible 

prediction  capability. 

Figure 26 shows  the  tracks of thunderstorms  near  Kansas 

City  (MKC  Radar)  on  day 113, 1975 (AVE  IV) for the  period 

1930 Z to 2239 Z. The  northern  tracks  come  from WNW while 

the  southernmost  track  comes  from WSW to W. The  detailed 

analysis  must  be  related to wind, temperature  and  water 

vapor  'fields  which  are  not  yet  available  for  AVE  IV. 

Consequently  further  analysis  and  development  of  the 

prediction  scheme  cannot be done at this  time.  However,  the SMS 

I 

1 satellite  data  are  available  for  the  same  time  period at 

30-minute  intervals.  Figure 27 shows a map  of  the U.S. 

as  reviewed  from SMS 1. Anvils  for  storms at 2100 Z, 

day 113, 1975, are  shown  sketched  in  near  station MKC. The 
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photographs  show  indications  of  a  non-uniform  wind  field  at 

cloud  heights  including  anvil  heights.  Interestingly,  the 

storm  whose  tracks  moved  most  to  the  right  had  initial  anvils 

which  extended  most  to  the  left  (the  north  storms).  This 

suggests  that  their  low-level  inflow  came  from the right  and 

penetrated  to  high  levels  with  some of its  ori'ginal  direction 

of  momentum.  More  detailed  analysis of the  satellite  data 

will  perhaps  be  warran'ted  when  the  radiosonde  data  become 

available. 

The  satellite  data  shown  also  in  Figure 28 verify  the 

observations  discussed  by  Allison,  et  al.,  1974,concerning 

clear  areas  initiating  thunderstorms.  The  radiosonde  and 

surface  thermal  data  can  be  related  to  the  clearness  and 

possibly  the  air  mass  movement  implied  by  cloud  areas  and 

other  early  day  cloud  features  near  the  storms as additional 

input  to  the  prediction  schemes  which  should  be  developed 

in  a  continuation  study to this  preliminary  six-month  study. 

The  next  and  final  chapter  briefly  states  the  main 

conclusions of the  present  report  and  recommends  several 

possible  continuation  studies. 

I- 
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FIGURES 



LEGENDS 

Figure 26. MKC Radar  Tracks  of  severe  storm  cells (1 deg. 

beam elevation). 1930  to  22392, day  113. 

Figure 27. Map of storm region as viewed  from SMS 1, day  113, 

1975. Locations of storm and radar MKC are 

shown. 

Figure 28. Tracings  from SMSl visual photos. See fig. 27 

for map. 
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Figure 27 
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Chapter VII. 

Conclusions  and  recommendations. 

,, 

The  conclusions  which  bear  upon  the  non-thermal  mechanism 

of  thunderstorm  development  are  in  four  categories.  First, 

the  concept  of  the  mechanism  is  developed  in  Chapter 2 from 

observations  in  wind  and  water  tunnels  of  a  jet  in  a  crossflow. 

Second,  examples  of  leeside  vortices  in  the  subcloud  inflow 

to  thunderstorms  are  given  using  data  taken  with  research 

aircraft.  Thirdly,  dual-doppler  observations  of  thunderstorms 

produce  added  detail  about  vortex  pairs  which  is  compared  with 

additional  analysis  of  wind  tunnel  data.  Finally,  a  first 

look  at  radar  and  satellite  data  for  thunderstorms  of  the 

AVE IV experiment  provides  indications  of  the  need  and 

possibilities  for  success  in  applying  the  concept  developed 

to  analysis  and  stratification  of  mesoscale  data.  The  purpose 

is  to  develop  a  practical  tool  for  prediction  of  thunderstorm 

movement  and  development. 

Briefly,  it is concluded  that  thunderstorms,  and  perhaps 

weaker  convective  clouds,  contain  the  mechanism  for  generation 

of  contra-rotating  vortex  pairs  within  themselves  at  and  above 

the  region  of  strong  collision  between  cloud  winds  and  ambient 

environment  winds.  The  scale  of  the  vortices  is  about  half  that 

of the  spread  width  of  the  cloud  updraft-downdraft  region. 
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The  vortices  may  exist  very  close  to  the  upwind  side  of  the 

cloud  or  they  may  trail  as a downwind  street  depending  upon  the 

magnitude  of a turbulence  Reynolds  number.  If  whole  cloud 

rotation  occurs  (it  is  usually  cyclonic)  then  the  member  of 

the  smaller  scale  vortex  pair  having  the  opposite  rotation  is 

apparently  suppressed  or  weakened. 

The  vortices  have  lowered  central  pressure  and  may 

induce  upward  motion  in  the  air  below  them.  Thus  depending 

upon  the  direction  of  the  subcloud  inflow-updraft  relative 

to  the  vortex  pair,  advance  lifting  may  occur  at  specific 

locations. As a result,  the  cloud  is  preferentially  formed 

causing  sequential  development  and  propagation  or  movement of 

the storm differing  from  the  case  without  vosrtex  pairs. 

If some  conditions  of  change  of  Reynolds  number  or  dual 

direction  of  inflow  occur,  the  storm  may  split. 

The  region  of  strong  collision  will  occur  wherever  there 

is a great  shear  in  the  local  wind.  Thus  one  would  expect 

vortex  pair  generation  from  slightly  below  cloud  base  to a 

few  kilometers  above  cloud  base.  Similarly  one  might  expect 

generation  near  cloud  top  and  jet  stream  levels  or  in  some 

cases  throughout  the  vertical  extent  of  the  cloud. 

An analytical  model  with  direct  predictive  capabilities 

could  be  developed  from  wind  or  water  tunnel  simulation  of 

thunderstorm  conditions. It would  be  more  difficult,  yet 

possible,  to  achieve  the  essence  of  the  process  by  3-dimensional 

numerical  simulation; but it  has  the  advantage  of  permitting 
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eventual  incorporation of thermal  effects.  Neither of these 

simulation  schemes  has  been  adequately  utilized  as  of  the 

time of the  present  report.  Consequently  the  only  quick, 

viable  approach to incorporating  the  vortex  pair  mechanism 

into  thunderstorm  development  predictions  is  by  indirect 

means  of  mesoscale  analysis  of  mesoscale  atmospheric  parameters 

in  their  layers  and  to  perform  a  multivariate  correlation 

analysis  related  to  storm motion,and intensity. 

It is  recornended  that 

(1) A multivariate  correlation  analysis  between  storm 

intensity  and  motion  and  mesoscale winds, wind  shears  and 

stability  be  performed.  The  purpose  is  to  develop  a  best 

prediction  of  storm  development  using  mesoscale  parameters 

with  greater  vertical  resolution  than  heretofore  and  with 

more  selectivity  in  layers of importance  in  the  problem; 

(2) A carefully  devised  water  tunnel  experiment  be  performed 

to  provide  a  more  comprehensive  set  of  data  for  modeling  the 

vortex  pair  mechanism  for  thunderstorm  geometries  and  kinematics; 

(3 )  A 3-d  numerical  simulation be made of a  simple  round  jet 

in  a  crossflow  to be compared  against  the few'available 

observations.  Favorable  simulation  would  lead  to  extension 

of  the  simulation  method  to  thunderstorms and, very  importantly, 

also to  the  problems  of  vertical  takeoff  and  landing  aircraft 

(VTOL) . 
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